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Chapter 1

Introduction

Most of unpreceded new research focuses on attempting to innovate through the creation of new
neural network architectures. Innovations in deep learning are being made in a radical rapid-pace,
always attempting to disrupt and supersede the established state-of-the art model architectures.
But what if there is something fundamentally wrong with the made assumptions on architectural
elements and the therefore resulting architectural components that are used in current (state-of-
the-art) architectures?

”Just because everyone around you is used to digging holes with their bare hands, it would be

bizarre to assume that this is the most efficient way to dig holes.”

Recent research [8] has shown that dense (fully connected) layers in Artificial Neural Networks
(ANN) are superfluous. They showed that all dense layers in ANNs can be replaced with sparse
ones before training using their sparse evolutionary training (SET) procedure, reducing quadrat-
ically the number of parameters, with no decrease in accuracy. SET was demonstrated on three
popular ANN types (restricted Boltzmann machines, multi-layer perceptrons and convolutional
neural networks), on two types of tasks (supervised and unsupervised learning), and on 15 bench-
mark datasets. SET is a finding that can potentially be very influential, yet unexplored and
unutilized by deep-learning enthusiasts. Referring back to the given metaphor:

”It seems that the shovel is invented, but everyone keeps digging with their hands!”

1.1 The New Domain

One of the biggest challenges in Natural Language Processing (NLP) is the shortage of train-
ing data needed for the many distinct NLP-tasks. The current go-to method to counteract this
shortage of data is the use of pre-trained embeddings; embeddings that are pre-trained on a large
corpus (billions of annotated training examples) in a variety of tasks in order to incorporate some
general word representation. Subsequently, these pre-trained models can be fine-tuned on a spe-
cific NLP task (e.g. classification, sentiment analysis) using a fairly small data-set, which results
in a substantial accuracy improvement compared to training a model from scratch [1], [9], [6].

Pre-training of embeddings was usually done using deep recurrent neural networks (RNN), but a
new architecture emerged: The Transformer [12]. In contrast to RNNs, the Transformer archi-
tecture uses no recurrence, but instead processes all words or symbols in a sequence in parallel
while making use of a self-attention mechanism to incorporate context from words farther away. In
October 2018, Google AI open-sourced its very promising Bidirectional Encoder Representations
from Transformers (BERT) architecture [2], which is heavily based on the transformer architec-
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CHAPTER 1. INTRODUCTION

ture. BERT outperforms previous state-of-the-art models in 11 NLP tasks. Moreover, in contrast
with other models, BERT does not need complex architectural changes to fine-tune towards spe-
cific tasks and is therefore being referred to as the ImageNet moment of NLP.

1.2 Research Question

This paper presents a case-study that introduces evolutionary sparsity in the original Transformer
model by means of the earlier mentioned SET-procedure. It was investigated whether the fully
connected layers in the transformer really are necessary to create an embedding that correctly
captures a corpus’contextual information. The adapted sparse architecture was used to train a
new model by means of a small corpus. Subsequently, the model was evaluated with a similar
English-to-German translation task, as proposed by the original authors of the Transformer model
[12]. The main hypothesis can be formulated as follows:

Hypothesis 1 (H1): The adapted Transformer model M ′ will perform at least as good as

the original Transformer model M in a German-to-English translation task.

First, the SET-procedure and the Transformer model architecture will be elaborated briefly, in
order to identify possible caveats and to identify where and how the SET-procedure can be ap-
plied. Subsequently, the evaluation framework, experiments and results will be presented. Lastly,
a brief conclusion will be given.

1.2.1 Contribution to Science

Although this given evaluation and validation of SET by the original authors is strong, SET could
potentially benefit of a case-study applied in other (more complex) deep-learning models and their
coherent domains. This could potentially re-enforce SET’s potential and provide insight in the
technical roadmap, necessary to overcome current implementation challenges and realize large-
scale implementation and adaption.

1.2.2 Repository of this project

The codebase for this seminar project can be found in the following public repository:

Introducing Sparsity in the Transformer model (a Keras Implementation):
https://github.com/jgcbrouns/Introducing-Sparsity-in-the-Transformer

Author: jgcbrouns
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Chapter 2

Background Study

2.1 The Transformer Architecture

The Transformer architecture follows an encoder-decoder structure. The encoder maps a se-
quence input X = (x1, .., xn) to a vector-representation input Y = (y1, .., yn). Subsequently,
the decoder takes this intermediate representation Y together with the previous representation
(auto-regression) and generates an output sequence of symbols Z(z1, .., zn). Both the encoder and
decoder are composed of a stack of N = 6 identical layers. Please refer to Figure 3.1 for a schemat-
ical overview of the model architecutre. A brief elaboration on the main architectural components
will now follow. Please note that the Transformer architecture is quite complex and that not all
components can be discussed in detail. For more elaborate information on the Transformer, please
take aid in the original paper of the authors [12].

2.1.1 Attention

Scaled Dot-Product Attention
This function essentially maps vector-sets of queries Q, keys K and values V to an output (see
figure 2.2). Input conists of queries and keys of dimension dk, and values of dimension dv. Attention
over the vector-sets will be calculated by means of a ’Scaled Dot-Product’:

Attention(Q,K, V ) = softmax(
QKT

√
dk

V )

Multi-head Attention
It was found beneficial by the authors to linearly project Q, V and K, h times with other linear
projections (see figure. 2.3). The attention function is then applied in parallel on these individual
projected versions which are subsequently concatenated and again projected, resulting in the final
values. In contrast with single-head attention, multi-head attention allows the model to jointly
attend information from different representation subspaces at different positions.

2.1.2 Positionwise Feed-forward Network

The feed-forward networks consists of two linear transformations with a ReLU activation in
between:

FFN(x) = max(0, xW1 + b1)W2 + b2

While linear transformations are the same across different positions, they use different parameters
from layer to layer. This can also be described as two convolutions with a kernel-size of 1.

Introducing Evolutionary Sparsity in the Transformer Model Architecture 3
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Figure 2.1: The Transformer - Model Architecture

Figure 2.2: The Scaled Dot-Product
Figure 2.3: Multi-Head Attention
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2.2 The Sparse Evolutionary Training Procedure

The SET training procedure is inspired by network properties of biological neural networks. Bio-
logical neural networks often are sparse and scale-free, yet their artificially created counterparts,
generally use fully connected layers. Before training, SET introduces evolutionary sparsity by re-
placing the fully connected layers with sparse layers. During training, SET evolves a Erdős-Rónyi
topology [4] into a scale-free topology (a network whose degree distribution follows a power law).
What follows is a brief elaboration of the SET-procedure:

• Before training (initialization):

– Define parameters:

∗ ǫ ∈ IR+ - controls the sparsity level

∗ ζ - fraction of closest weights to 0 that are removed and added

– Replace every fully connected layer FCk in the ANN with a sparse connected layer
SCk, where:

∗ SCk has nk neurons, collected in a vector hk = [hk
1 + hk

2 , ..., h
k
nk ]

∗ SCk has a Erdős-Rónyi topology in which the probability of a connection between
neuron hk

i and hk−1

i is:

p(W k
ij) =

ǫ(nk + nk−1)

nknk−1

• During training:
For each normal training epoch e, the standard training procedure and weights update is
being followed. Subsequently, for every sparse connected layer SCk:

(1) A fraction ζ of the weights closest to zero are removed.

(2) If e is not the last training epoch, new weights (connections) are added in the same
amount as removed previously under (1).

Introducing Evolutionary Sparsity in the Transformer Model Architecture 5



Chapter 3

Approach

3.1 Applying SET

3.1.1 Where to apply?

The SET procedure can be applied to any fully-connected layer. It was chosen to attempt the
introduction of evolutionary sparsity into the attention mechanism, rather than the feed-forward
network of the transformer, since the feed-forward network uses dense-layers that are implemented
as convolutional layers. Moreover, since the attention-mechanism is ’the heart’ of the Transformer,
a good outcome will be more meaningful to the case-study of SET; the layers that encode the con-
textual meaning of every input token are now directly targeted by the sparsity introduction.

Recall from section 2 that in the Multi-head Attention component of the Transformer, the queries
Q, keys K and values V are linearly projected h times with other linear projections. Dense layers
are used to create an embedding for every input-token that is subsequently used to generate Q,
V and K. The adaption will be performed on these dense layers: initially, SET converts these
dense layers to sparse layers with a Erdős-Rónyi topology. In the training-phase, a fraction ζ of
weights closest to zero will be removed and subsequently be randomly added in the same amount.
The functioning of the the attention-mechanism should be similar when introducing evolution-
ary sparsity, since the attention-mechanism selects attention based on the highest corresponding
Key-Query-Value tuple through scalar-products and Softmax. In contrast with this, SET is only
interested in the lowest weights in these layers.

3.1.2 Mask Technique

According to the original authors of SET, as for now, all deep learning implementations are based
on very well-optimized dense matrix multiplications on GPUs, while sparse matrix multiplications
are extremely limited in performance. The original authors of SET performed proof-of-concept
experiments in order to simulate and validate the functioning of SET. This involved using fully con-
nected layers and a mask over weights in order to simulate sparsity. The same masking-technique
will be used in this case-study, since truely (and efficient) sparse-matrix multiplications are still
not properly implemented on GPUs.
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3.2 Implementation details

3.2.1 Used Codebases

Parts of the following codebases was used:

• Proof of concept Keras implementation of SET:
Author: Dcmocanu

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks

• A Keras+TensorFlow Implementation of the Transformer:
Authors: Lsdefine, JulesGM

https://github.com/Lsdefine/attention-is-all-you-need-keras

• Attention is all you need - A Pytorch implementation:
Author: Jadore801120

https://github.com/jadore801120/attention-is-all-you-need-pytorch

3.2.2 Custom Transfer Method

After every trainings-epoch, the trained model unfortunately needs to be re-initialized. This is
due to how the masking of weights is implemented in the proof-of-concept code. Masking weights
in Keras is done via the kernel constraint parameter upon creating a new layer. Once the layer
is created, kernel constraint cannot be set anymore. Since, SET needs to reapply masking of
the weights after every trainings-epoch, the original authors of SET were forced to reinitialize
the model after every epoch while manually applying the rewired weights and weighs-mask of the
previous model to this new model upon creation of the sparse layers.

The original authors of SET used small models with only few sparse layers and could therefore
hard-code the creation and re-initialization of the model. Because the Transformer architecture
is very extensive and complex, a custom model transfer procedure was designed that dynamically
merges the newly initialized model (that contains the masked weights) with the old model (that
contains the weights of the remaining non-sparse layers).

The role of this custom transfer method in the implementation of SET is visually depicted in
figure 3.1 and can be described more formally as follows:

1. After each epoch: for every sparse layer s ∈ S, the corresponding weights-matrix w gets
extracted via the Keras API using a previously assigned unique identifier for that particular
layer. Let W be the set of all weights.

2. ∀w ∈W : weight matrix w is rewired (SET algorithm).

3. A new empty Transformer model newModel is constructed where, upon initialization via the
Keras weights parameter, for each sparse layer s ∈ S, its corresponding adjusted weights are
set as obtained in the previous step using the SET-procedure. The weights-mask is set via
the Keras kernel constraint parameter.

4. The newModel will be merged with the oldModel by means of a custom-designed model-
transfer procedure. Pseudocode can be found below: Algorithm 1 Custom Model Transfer
Procedure

Because of the introduction of this custom model transfer procedure, we need to validate that
this procedure does not introduce any other dependent factors that could offset our experiment-
results. In other words, one cannot directly compare the original validated Transformer model
implementation with a variant of the Transformer model that features both a ’sparsity adaption’
and a ’function to transfer models’; multiple independent factors can be considered and thus it
would be hard to yield a valid conclusion.
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CHAPTER 3. APPROACH

Algorithm 1 Custom Model Transfer Procedure - Pseudocode

1: S← list of unique identifiers for every sparse layer
2: newModel← newly initialized Keras Transformer model
3: oldModel← old Keras Transformer model obtained from previous epoch
4: index← 0
5: for layer in newModel.layers do
6: if layer.name not in S then
7: weightsFromLastEpoch = oldModel.layers[index ].get weights()
8: layer.set weights(weightsFromLastEpoch)
9: index++

10: endif
11: endfor

Figure 3.1: Schematic view of the custom model transfer procedure
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3.3 Evaluation Method

The WMT’16 Multimodal Translation task [3] (Multi30k) will be used to validate the model’s
accuracy. This is a shared task aimed at the generation of image descriptions in a target language,
given an image and one or more descriptions in a different (source) language. Evaluation will be
performed against the German human translation on the test set using standard MT evaluation
metrics, with METEOR[7] as the primary metric.

3.3.1 Dataset properties

The training data consists of 29,000 samples, each containing an English source sentence and its
German translation (created by a human). The test data consists of 1,000 samples. An example
sentence-pair sample is as follows:

Two men are playing music on a bench . Zwei Männer auf einer Bank musizieren .

Introducing Evolutionary Sparsity in the Transformer Model Architecture 9
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Experiments and Results

Google’s Cloud Compute Engine was used to deploy 3 instances of the same virtual machine to
ensure parallel training. Each VM trained one of the three Transformer variants on a NVIDIA
Tesla P100 GPU and 8x vCPU 2.8GHz. The three versions of the transformer model, as discussed
in section 3, were trained with the following noticeable parameters:

Variable Value Original Value* Additional Description

batch size 64 64 Batch size
dropout 0.1 0.1 Dropout
max epoches 30 n.a The number of epochs that were trained
d model 512 512 Dimension of embedding-layers layers and residual connections
d inner 512 2048 Dimension of inner layers
dk 64 64 Dimensions of keys and queries
dv 64 64 Dimensions of values
layers 2 6 # of identical stacked layers the encoder and decoder
n head 8 8 The amount of stacked encoder and decoders
ζ 0.3 0.3 The fraction of the weights closest to zero that are removed
ǫ 20 20 Factor that determines the sparsity level

* Refers to the values as set in the paper of the original authors. Due to limited computational

resources, lower values had to be used to ensure that the model fits in the GPU-memory.

The original unadapted Transformer took 4 hours and 11 minutes to train. The Transformer
with transfer function took 6 hours and 20 minutes to train and the Sparse Transformer with
transfer function took 8 hours and 7 minutes to train. Results of the validation accuracy can be
observed in figure 4.1. Results of the validation loss can be observed in figure 4.2. See Appendix
A for a table of validation accuracies per epoch for all the three Transformer variants.
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Figure 4.1: Sparse Transformer variants - validation accuracy

.png

Figure 4.2: Sparse Transformer variants - validation loss
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Chapter 5

Conclusions

The original transformer (both with and without the transfer function) can be observed to have
similar accuracy and loss functions. Hence a valid comparison of the results of the sparse Trans-
former and the original transformer is possible, since it is to be assumed that the custom model
transfer procedure does not introduce additional factors that could contribute to different experi-
ment outcomes.

As can be observed in figure 4.1, the sparse Transformer seems to outperform both the ori-
ginal Transformers, while having two orders of magnitude fewer parameters (for the selected fully-
connected layers). Moreover, the sparse Transformer manages to obtain a higher starting accuracy
that both original variants never seem to catch up with. Having an initial higher accuracy for the
sparse model is notably different with was observed by the original authors of SET; for them, the
sparse variants usually start with lower accuracies and at some point start to slightly outperform
(and continue to outperform) the non-sparse variants.

In the final epochs, the models converge to similar accuracies; in the last 5 epochs on average
70.8% for the original Transformer (with the transfer function) and 71.2% accuracy for the sparse
Transformer. To refer back to the hypothesis H1 that was defined in section 1, it can be concluded
that H1 does indeed hold, that is: the adapted Transformer model M ′ indeed performs at least as
good as the original Transformer model M in a German-to-English translation task.

5.0.1 Future work

Due to the limited extent of this seminar and the therefore short period of time to implement and
experiment with different factors (such as model parameters), more research and experimentation
is required to draw final conclusions on the degree of impact that sparsity can have on the Trans-
former model. In this sense, experiments could be conducted with other parameter-settings for
the dimension of the inner layers, the amount of layers per encoder and decoder, different values
of ζ and ǫ etc. Besides experimenting with different model parameters, multiple runs of the same
model (with the same parameters) could be conducted in order to observe the average results of
a model.

The Transformer model architecture forms the base of many recent developments that intro-
duces new state-of-the-art architectures among which (the earlier mentioned) Google AI’s BERT,
the OpenAI Transformer [11] and ELMO [10]. Adapting these state-of-the-art models with the
same sparse Transformer could be an interesting direction for future work. An intermediary step
could be to apply block-sparsity to the Transformer; a promising technique that has seen recent
developments in terms of overcoming software engineering related hurdles. [5].
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Introducing evolutionary sparsity in fully connected layers has proven great potential, yet software-
technical implementation issues (e.g. truly sparse matrix multiplications) are a current unavoidable
obstacle to move from ’proof-of-concept’ implementations to ’production usable’ implementations.
Showing SET’s value to the deep-learning community by applying it to new popular state-of-the-
art model architectures could speed things up and create the necessary traction for overcoming
SET’s practical boundaries.
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Appendix A

Validation Accuracies

Validation accuracies per epoch for all the three Transformer variants. Delta (∆) refers to the
absolute difference between the original with transfer procedure and the original without the
transfer procedure. In bold are Deltas that are equal or greater than 0.01

Sparse Original With Transfer Original ∆

0.235 0.215 0.215 0.000
0.313 0.298 0.315 0.017
0.410 0.389 0.367 0.022
0.480 0.456 0.438 0.018
0.533 0.513 0.493 0.020
0.584 0.547 0.543 0.004
0.609 0.585 0.580 0.005
0.636 0.600 0.599 0.002
0.647 0.622 0.605 0.017
0.664 0.648 0.638 0.011
0.673 0.662 0.658 0.003
0.681 0.669 0.663 0.006
0.695 0.672 0.663 0.009
0.686 0.682 0.671 0.011
0.697 0.693 0.684 0.009
0.700 0.691 0.681 0.010
0.701 0.695 0.689 0.006
0.703 0.694 0.690 0.004
0.707 0.702 0.697 0.005
0.705 0.701 0.697 0.004
0.706 0.703 0.696 0.007
0.711 0.704 0.697 0.006
0.708 0.709 0.696 0.013
0.711 0.708 0.701 0.007
0.715 0.709 0.698 0.011
0.712 0.709 0.694 0.014
0.711 0.708 0.699 0.009
0.712 0.704 0.702 0.002
0.715 0.709 0.696 0.013
0.711 0.709 0.696 0.014
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